Contents

Title Page	i
Certificate of Approval	iii
Certificate by the Supervisors	v
Declaration	vii
Acknowledgement	ix
Abbreviations	xi
List of Symbols	xiii
Abstract	XV
List of Tables	xxi
List of Figures	xxiii

Chapter 1 Introduction

1.1 Introduction to wireless sensor network	1
1.2 Motivation	4
1.3 Problem formulation	6
1.4 Contributions made in the Thesis	6
1.5 Outline of the Thesis	7

Chapter 2 Literature Review

2.1	Introduction	11
2.2	Lifetime and clustering in WSN	12
2.3	Sensing models, coverage and connectivity in WSN	17
	2.3.1 Sensing models of sensor node	18

	2.3.2 Mathematical analysis for network coverage	20
	2.3.3 Related work on coverage and connectivity	22
2.4	MAC protocols, routing protocols and cross layer design of WSN	25
2.5	Data aggregation and node scheduling	29
2.6	Wireless image sensor network	30
2.7	Wireless passive sensor network	32
2.8	Summary	32

Chapter 3 Design and Analysis of a Cluster-Based Wireless Sensor Network for Guaranteed Network Lifetime

3.1	Introduction	33
3.2	System model	34
	3.2.1 Network architecture	34
	3.2.2 Energy consumption model	36
	3.2.3 Data aggregation model	37
	3.2.4 Cost model of nodes	38
3.3	Optimal system design approaches	38
	3.3.1 Single hop mode inside a hexagonal cluster	38
	3.3.2 Multi-hop mode inside a hexagonal cluster	41
	3.3.3 Hybrid mode of communication	44
3.4	Results and discussions for optimal design approaches	46
3.5	Summary	53

Chapter 4 Equal Energy Dissipation in Wireless Sensor Network

4.1	Introduction	55
4.2	System description considering linear array	56
4.3	Regular placement of sensor nodes in linear array for equal energy dissipation	58
	4.3.1 Analysis for node placement	59

4.3.2 Results and discussions for regular placement of nodes in linear array	60
4.4 Random placement of sensor nodes in linear array	67
4.4.1 Analysis for node placement	67
4.4.2 Results and discussions for random node placement	71
4.5 On the concept of 'guaranteed' lifetime in the light of positional variation of the nodes	75
4.6 Condition for equal energy consumption for planar area	76
4.6.1 Analysis for planar area	76
4.6.2 Node placement for Y-shaped array of nodes	78
4.6.3 Numerical results and discussions	80
4.7 Summary	84

Chapter 5 Wavelet-Based Image Transmission in Wireless Sensor Network

5.1 Introduction	85
5.2 System description	87
5.3 Energy consumption model of wireless camera node	88
5.3.1 Image processing energy consumption model	88
5.3.2 Radio communication energy consumption model	89
5.4 Image compression using 2D-DWT	89
5.5 Placement of camera nodes for equal energy dissipation	92
5.6 Results and discussions for image transmission	94
5.7 Summary	102

Chapter 6 Network Coverage and Its Dependence on Sensing Model and Node Failure Probability

6.1	Introduction	103
6.2	Analytical formulation of network coverage for Elfes sensing model	104
6.3	Impact of node failure on network coverage	109

110
112
117
128
131

References	137
Author's communications	153
Curriculum Vita	155

List of Tables

Table		
2.4.1	Comparison of major MAC protocols	26
3.4.1	System parameters for performance analysis	46
4.3.1	System parameters considered for performance analysis	61
4.3.2	Numerical results with system parameters in Table 4.3.1	66
4.6.1	System parameters for performance analysis	81
5.1.1	Summary of CMOS-based major camera systems	86
5.6.1	System parameters considered for performance analysis	96
6.6.1	Coverage fraction analysis in terms of a set of parameters of Elfes sensing model, $R_{max} = 50$ m, $\beta = 1$	125
6.6.2	System parameters for performance analysis	126
6.6.3	Inter-node distance for radial array	127

List of Figures

Figure		
1.1.1	Block diagram of a typical wireless sensor node	2
1.1.2	Wireless sensor networks (WSN): A classification	3
2.1.1	A tree summarizing the major areas of research in wireless sensor network	12
2.3.1	Sensing models of sensor node	18
3.2.1	Scheme of clustering: circular cluster and hexagonal cluster	35
3.2.2	Radio energy consumption model	36
3.3.1	Single hop mode of communication in a hexagonal cluster	39
3.3.2	Multi- hop mode of communication in a hexagonal cluster	42
3.4.1	Variation of CHs with relative cost of CH $(2.26 \times 10^{-7} \text{ J}^{-1} \times \alpha_1/\beta)$ for $n = 2$ and $c = 1$: (a) single hop (our scheme); (b) single hop [Mha'04]; (c) multi-hop (our scheme); (d) multi-hop [Mha'04]	47
3.4.2	Variation of CHs with relative cost of CH $(2.26 \times 10^{-7} \text{ J}^{-1} \times \alpha_1/\beta)$ for $n = 2$ and $c = 2$: (a) single hop (our scheme); (b) single hop [Mha'04]; (c) multi-hop (our scheme); (d) multi-hop [Mha'04]	48
3.4.3	Variation of CHs with relative cost of CH $(2.26 \times 10^{-7} \text{ J}^{-1} \times \alpha_1/\beta)$ for $n = 4$ and $c = 1$: (a) single hop (our scheme); (b) single hop [Mha'04]; (c) multi-hop (our scheme); (d) multi-hop [Mha'04]	49
3.4.4	Variation of CHs with relative cost of CH $(2.26 \times 10^{-7} \text{ J}^{-1} \times \alpha_1/\beta)$ for $n = 4$ and $c = 2$: (a) single hop (our scheme); (b) single hop [Mha'04]; (c) multi-hop (our scheme); (d) multi-hop [Mha'04]	50
3.4.5	Variation of CHs with sensor nodes for single hop communication, $n = 2$ and $c = 1$: (a) $\alpha_1/\beta = 0$ J; (b) $\alpha_1/\beta = 4.42 \times 10^6$ J; (c) $\alpha_1/\beta = 8.84 \times 10^6$ J; (d) $\alpha_1/\beta = 22.1 \times 10^6$ J	51
3.4.6	Variation of CHs with sensor nodes for single hop communication, $n = 2$ and $c = 2$: (a) $\alpha_1/\beta = 0$ J; (b) $\alpha_1/\beta = 4.42 \times 10^6$ J; (c) $\alpha_1/\beta = 8.84 \times 10^6$ J; (d) $\alpha_1/\beta = 22.1 \times 10^6$ J	51

3.4.7	Variation of CHs with sensor nodes for multi-hop communication, $n = 4$ and $c = 1$: (a) $\alpha_1/\beta = 0$ J; (b) $\alpha_1/\beta = 4.42 \times 10^6$ J; (c) $\alpha_1/\beta = 8.84 \times 10^6$ J; (d) $\alpha_1/\beta = 22.1 \times 10^6$ J	52
3.4.8	Variation of CHs with sensor nodes for multi-hop communication, $n = 4$ and $c = 2$: (a) $\alpha_1/\beta = 0$ J; (b) $\alpha_1/\beta = 4.42 \times 10^6$ J; (c) $\alpha_1/\beta = 8.84 \times 10^6$ J; (d) $\alpha_1/\beta = 22.1 \times 10^6$ J	53
4.2.1	Linear array of wireless sensor nodes	57
4.3.1	Inter-node distance for different node placement ($K = 33$, $D = 3000$ m, $n = 2.0$): (a) for scheme-a; (b) for scheme-b; (c) for scheme-c	63
4.3.2	Energy consumption pattern for different node placement ($K = 33$, $D = 3000$ m, $n = 2.0$): (a) for scheme-a; (b) for scheme-b; (c) for scheme-c	64
4.3.3	Lifetime variation with number of nodes deployed ($D = 3000$ m, $n = 2.0$): (a) for scheme-a; (b) for scheme-b; (c) for scheme-c	65
4.3.4	Residual energy of the network ($D = 3000$ m, $K = 33$, $n = 2.0$): (a) for scheme-a; (b) for scheme-b; (c) for scheme-c	66
4.4.1	Scheme for random node placement with variable bin width	67
4.4.2	Comparison of energy consumption profile of nodes ($K = 33$, $D = 3000$ m, $n = 2.0$): (a) regular placement (scheme-c); (b) analytical result (scheme-c) for random placement with variable bin width; (c) simulation result (scheme-c) for random placement with variable bin width	72
4.4.3	Variance of energy consumed by nodes ($K = 33$, $D = 3000$ m, $n = 2.0$): (a) analytical result for random placement with variable bin width; (b) simulation result for random placement with variable bin width	73
4.4.4	Random node placement with fixed bin width	74
4.4.5	Variation of mean energy with node number ($K = 33$, $D = 3000$ m, $n = 2.0$): (a) regular placement with scheme-c; (b) random placement with variable bin width; (c) random placement with fixed bin width	74
4.4.6	Variation of energy variance with node number ($K = 33$, $D = 3000$ m, $n = 2.0$): (a) random placement with variable bin width; (b) random placement with fixed bin width	75

4.6.1	Area of interest is divided into clusters of hexagonal shape (a); A cluster consists of six sectors and nodes are placed on linear and Y-shaped array over a sector (b)	77
4.6.2	Structure of a Y-shaped extended array of nodes	78
4.6.3	Node placement scheme in Y-shaped array of nodes	79
4.6.4	Inter-node spacing for the linear array $(K=5)$	81
4.6.5	Energy dissipation profile for the linear array ($K = 5$)	82
4.6.6	Inter-node spacing for the extended array ($K_1 = 4, K_2 = 1, K_3 = 1$)	83
4.6.7	Energy dissipation profile for the extended array $(K_1 = 4, K_2 = 1, K_3 = 1)$	83
5.2.1	Linear array of wireless camera sensor nodes	88
5.4.1	A wavelet-based image compression system block diagram	90
5.4.2	Wavelet spectral decomposition: (a) Original image; (b) Single level decomposition; (c) Two level decomposition	91
5.6.1	Inter-node spacing for different node placement ($K = 10$, $D = 500$ m, $n = 2.0$): (a) for scheme- a; (b) for scheme- b	97
5.6.2	Energy consumption pattern for different node placement ($K = 10, D = 500 \text{ m}, n = 2.0$): (a) for scheme- a; (b) for scheme- b	98
5.6.3	Residual energy of the network ($D = 500$ m, $K = 10$, $n = 2.0$): (a) for scheme- a; (b) for scheme- b	99
5.6.4	Variation of network lifetime $(D = 500 \text{ m}, K = 10, n = 2.0)$: (a) for scheme- a; (b) for scheme- b	100
5.6.5(a)	Original Peppers image	101
5.6.5(b)	Reconstructed Peppers image with PSNR 24.79 dB	101
5.6.6(a)	Original Lena image	101

5.6.6(b)	Reconstructed Lena image with PSNR 26.48 dB	101
6.2.1	The sensing for Elfes sensing model	105
6.4.1	Scheme of regular node placement	111
6.5.1	Node placement for equal energy dissipation	114
6.5.2	Multi-hop communication	117
6.6.1	Variation of coverage fraction with number of nodes for a circular area with radius 1000 m and $r_s = 50$ m (coverage degree, $k = 1$). Three sets of curves are obtained for $P_f = 0, 0.4$ and 0.8	118
6.6.2	Variation of coverage fraction with number of nodes for a circular area with radius 1000 m and $r_s = 50$ m (coverage degree, $k = 2$). Three sets of curves are obtained for $P_f = 0, 0.4$ and 0.8	119
6.6.3	Variation of coverage fraction with probability of node failure (P_f) for a circular area with radius 1000 m and $r_s = 50$ m (coverage degree, $k =$ 1) for $N = 500$, 1000 and 2000	120
6.6.4	Variation of coverage fraction with probability of node failure (P_f) for a circular area with radius 1000 m and $r_s = 50$ m (coverage degree, $k = 2$) for $N = 500$, 1000 and 2000	121
6.6.5	Variation of coverage fraction (coverage degree, $k = 1$) with probability of node failure (P_f) for a circular area with radius 1000 m, $r_s = 50$ m and $N = 1000$: (a) Boolean sensing model; (b) Shadow fading ($\sigma = 2$ dB), (c) Elfes sensing ($R_1 = 10$ m, $\lambda = 0.01/m$, $\beta = 1$), (d) Shadow fading ($\sigma = 10$ dB), (e) Elfes sensing ($R_1 = 10$ m, $\lambda = 0.1/m$, $\beta = 1$), (f) Elfes sensing ($R_1 = 10$ m, $\lambda = 0.01/m$, $\beta = 2$)	122
6.6.6	Variation of coverage fraction in the absence of node failure for a circular area with radius 1000 m and sensing radius $r_s = 50$ m (coverage degree, $k = 1$): (a) Boolean sensing, (b) Shadow fading ($\sigma = 2$ dB), (c) Elfes sensing ($R_1 = 0$ m, $\lambda = 0.01/m$, $\beta = 1$), (d) Shadow fading ($\sigma = 10$ dB), (e) Elfes sensing ($R_1 = 10$ m, $\lambda = 0.03/m$, $\beta = 1$), (f) Elfes sensing ($R_1 = 0$ m, $\lambda = 0.03/m$, $\beta = 1$)	123
6.6.7	Variation of coverage fraction, f_a with normalized sensing radius for $R = 1000$ m, $r_{smax} = 50$ m (coverage degree, $k = 1$): (a) Random placement and $N = 2000$; (b) Random placement and $N = 1000$; (c) Random placement and $N = 500$; (d) Random placement and $N = 300$;	124

(e) Random placement and N = 100; (f) Regular node placement according to Fig. 6.4.1

6.6.8 Variation of coverage fraction, f_a with number of data gathering cycles 128 for R = 1000 m, N = 1260 and $r_s = 50$ m (coverage degree, k = 1): (a) Equal energy consumption; (b) Random placement and single hop communication; (c) Random placement and multi-hop communication