STRIKE-SLIP TECTONICS ALONG A CRATON-MOBILE BELT CONTACT: STRUCTURE, METAMORPHISM, GEOCHRONOLOGY AND GRAVITY ACROSS THE EASTERN GHATS PROVINCE-RENGALI PROVINCE BOUNDARY, INDIA

Thesis submitted to Indian Institute of Technology Kharagpur for the award of the degree

of

Doctor of Philosophy

by

Sawant Amol Dayanand (13GG91F02)

Under the Supervision of

Professor Saibal Gupta and

Professor William Kumar Mohanty

Department of Geology and Geophysics Indian Institute of Technology Kharagpur May 2019

Abstract

In the Indian shield, the northern margin of the Eastern Ghats Province (EGP: a Proterozoic mobile belt) is in contact with the Rengali Province (an Archaean craton), along an ESE-WNW trending interface. The western side of the contact is covered with the sediments of Talchir basin, while the *eastern side* of the contact is well exposed but less studied. In the contact zone, granulite facies metapelites (khondalites), charnockites, and K-feldspar augen gneisses represent dominant lithologies in the EGP, while the Rengali Province contains a variety of amphibolite and granulite facies gneisses, intruded by amphibolite and dolerite dykes. The EGP underwent **D**_{EGP1} and **D**_{EGP2} deformation under granulite facies conditions, while the metamorphic grades of the D_{ER1} and D_{ER2} deformations in the Rengali Province vary from granulite to amphibolite facies. Along the contact, the penetrative foliations in both the EGP and the Rengali Province units strike ESE-WNW with subvertical dips, suggesting their reorientation during a later shared deformation event D_3 that amalgamated the EGP with the Rengali Province. Electron Backscatter Diffraction (EBSD) analyses of quartz are consistent with dextral strike-slip shearing under greenschist to lower amphibolite facies conditions during D₃. Crosscutting micro-faults and pseudotachylite veins associated with the mylonites in the EGP suggest that the D₃ shearing at the exposed level occurred near the brittle-ductile transition depth. The granulite facies assemblages stabilized during DEGP1-**D**_{EGP2} in the EGP indicate the peak metamorphic P-T conditions around 818 ± 48 °C, $10.7 \pm$ 1.3 kbar at low water activity ($X_{H2O} = 0.5$); monazite chemical ages indicate 1000-900 Ma ages for the EGP granulite metamorphism, with 800-500 Ma monazites in high D_3 strain zones. Amphibole-plagioclase thermometry in the Rengali lithologies suggests equilibrium metamorphic temperatures varying from 700 \pm 13 °C at 10 kbar to 739 \pm 17 °C at 5 kbar. Monazite chemical dates of 3000/2800/2500 Ma without any 1000 Ma or younger overprint suggest D_{ER1} and D_{ER2} to be Archaean. Gravity data across the contact reveals a distinct gravity contrast that coincides spatially with the geological terrane boundary; 3D compact inversion of Bouguer gravity anomalies indicate that the contact is subvertical at least up to 25 km depth. Thus, the Rengali Province and EGP amalgamated along a ~500 Ma, ESE-WNW trending subvertical dextral crustal-scale strike-slip shear zone (the Brahmani Shear Zone, BSZ). The BSZ can be correlated with a shear zone in the Rauer Group of east

Antarctica that preserves similarly juxtaposed subvertical bands of Archaean and Proterozoic lithologies intersected by ~550-500 Ma-age mylonites. (409 words)

(Keywords: strike-slip craton-mobile belt, gravity contrast, Eastern Ghats, Rengali, Rauer)