
Abstract

This thesis addresses the computational methods to compute eigenvalues and generalized

inverses of real and complex matrices and the application of interval analysis to derive rigorous

error bounds for them. Development of efficient computational methods for handling eigenval-

ues and generalized inverses of real and complex matrices and their associated errors are most

important and challenging problems in applied mathematics and numerical analysis. Chapter 3

describes two approaches to establish verifiable sufficient regularity conditions of complex in-

terval matrices used to compute the bounds of interval eigenvalues sets. In the first approach, a

complex interval matrix is mapped to a real block interval matrix, and then its sufficient regu-

larity conditions are obtained. In the second approach, a necessary condition for the singularity

of a complex interval matrix is derived and used to get its sufficient regularity conditions. As

an application, the above derived sufficient regularity conditions are used to investigate the lo-

cation of the outer approximations of individual eigenvalue sets of complex interval matrices.

Two algorithms are proposed, and results obtained are compared with those obtained by earlier

methods and Monte Carlo simulations. The advantages of these algorithms are that they can

detect gaps in between the approximations of the whole eigenvalue sets much better than the ex-

isting methods. The second algorithm is very effective compared to the first algorithm regarding

computational time. Several numerical examples and statistical experiments are worked out to

validate and demonstrate the efficacy of our work. The novelty of this work is to achieve gaps

in between the outer approximations of whole eigenvalues sets and to find outer approximations

for individual eigenvalue sets of real or complex interval matrices using their sufficient regular-

ity conditions. In Chapter 4, an iterative method is proposed to compute the outer eigenvalue

bounds for the real symmetric interval matrices. It uses Jordan canonical form of real symmetric

interval matrices to approximate their eigenvalue bounds. First, it obtains a midpoint matrix of

a real symmetric interval matrix into its Jordan canonical form and then constructs an interval

matrix whose midpoint matrix is diagonal such that its singularity and eigenvalue bounds are

preserved. Next, the eigenvalue bounds are computed using a sufficient regularity condition.

The algorithm and corresponding computational costs are given. The benefits of this work are

that it substantially reduces the operations involved in the computation of inverses of real ma-

trices. The efficiency and applicability of the iterative method are demonstrated by working out

five numerical examples. One of them considers randomly generated large dimensional interval

matrices. The dependency of the bounds by the radius of the input matrix are shown in the tab-

ular form. It is observed that the eigenvalue bounds are improved if the radius of the symmetric

interval matrix is small. Obtained results are comparable to those given earlier. In Chapter 5, the

diagonal stability and generalized diagonal stability for three classes of parametric interval ma-

trices are considered. Necessary and sufficient conditions for the Schur diagonal stability (SDSp)

and Hurwitz diagonal stability (HDSp) of a real matrix under Hölder norm which generalizes the



definitions of Schur and Hurwitz stability are developed. Some verifiable sufficient conditions

for SDSp and HDSp of the first parametric class of matrices are given using majorant matrices.

Next, using another set of majorant matrices, necessary and sufficient conditions for SDSp and

HDSp are obtained for the second and third parametric classes of matrices, respectively. It is

found that SDS2 / HDS2 for complex interval matrices are its special cases. Methods for find-

ing common diagonal matrix satisfying the SDSp / HDSp conditions are given. The robustness

analysis of SDSp / HDSp is also carried out. Chapter 6 describes a new iterative scheme for

deriving error bounds of the Moore-Penrose generalized inverse A† of an arbitrary rectangular

or singular real or complex matrix A of arbitrary rank. An approach based on a sequence of

inclusion interval matrices containing the Moore-Penrose inverse is used. The proposed iterative

scheme requires that the rank of A is known or computed. Starting from the initial interval ma-

trix constructed appropriately by using the initial approximation to the Moore-Penrose inverse in

conjunction with the hyperpower iterative method for generating successive approximations, a

sequence of monotonic inclusion interval matrices is generated. Each interval matrix included in

the sequence contains A†. A convergence theorem is established. Theoretical results show that

the sequence of monotonic inclusion interval matrices converges to A†. Numerical examples in-

volving randomly generated matrices are solved to demonstrate the efficacy of our approach. In

comparison with the results obtained using the method from Zhang et al. (2006), it is found that

our approach gives better accuracy. In Chapter 7, an interval extension of SMS method called

ISMS method for computing weighted Moore-Penrose inverse A†
MN for full row or column rank

complex rectangular matrices A, for Hermitian positive definite matrices M and N, along with its

guaranteed rigorous error bounds are proposed. The classical floating point numerical computa-

tion of SMS method always provides an approximation to the weighted Moore-Penrose inverse,

not the exact one. Starting with a suitably chosen complex interval matrix containing A†
MN , the

method generates a sequence of complex interval matrices each enclosing A†
MN and converging

to it. A new method is developed for constructing an initial complex interval matrix containing

A†
MN . Convergence theorems are established. The R-order convergence is shown to be equal to

at least l, where l ≥ 2. Some numerical examples are worked out to demonstrate its efficiency

and effectiveness. Graphs are plotted to show variations of the number of iterations and compu-

tational times compared to matrix dimensions. It is observed that ISMS method is more stable

compared to SMS method. In Chapter 8, a quadratically convergent iterative method based on

Newton’s method is developed for approximating Drazin inverse bd of b in Banach algebra J .

It is based on an iterative method developed by Srivastava and Gupta (2015) for approximat-

ing the generalized outer inverse A(2)
T,S of A ∈B(X ,Y ), where B(X ,Y ) denotes the set of

bounded linear operators between Banach spaces X and Y . Convergence results of improved

approximate solutions, as well as the error estimates, are derived. Further, its extension to a kind

of the hyperpower iterative method is also described, and the results concerning its convergence

and the error estimate are established.
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